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Abstract Multiresolution texture-based volume visualization is an excellent technique to enable interactive
rendering of massive data sets. Interactive manipulation of a transfer function is necessary for proper ex-
ploration of a data set. However, multiresolution techniques require assessing the accuracy of the resulting
images, and re-computing the error after each change in a transfer function is very expensive. We extend our
existing multiresolution volume visualization method by introducing a method for accelerating error calcula-
tions for multiresolution volume approximations. Computing the error for an approximation requires adding
individual error terms. One error value must be computed once for each original voxel and its corresponding
approximating voxel. For byte data, i.e., data sets where integer function values between 0 and 255 are given,
we observe that the set of �error pairs� can be quite large, yet the set of unique error pairs is small. Instead
of evaluating the error function for each original voxel, we construct a table of the unique combinations and
the number of their occurrences. To evaluate the error, we add the products of the error function for each
unique error pair and the frequency of each error pair. This approach dramatically reduces the amount of
computation time involved and allows us to re-compute the error associated with a new transfer function
quickly.

1 Introduction

When rendering images from approximations, it is necessary to know how close a generated image is to the
original data. For multiresolution volume visualization, it is not possible to compare the images generated from
original data to all possible images generated from approximations. The reason for using the approximations is
to substantially reduce the amount of time required to render the data. If we assume that there is a reasonable
amount of correlation between the data and the resulting imagery, we can compute an error value between the
approximations and the original data (in 3D object space). We can then use that value to estimate the error in
the 2D imagery.

Even so, the amount of time required to evaluate the error over an entire data hierarchy can be signi�cant. This
consideration is especially important when it is necessary for a user to interactively modify a transfer function:
each change in the transfer function requires us to re-compute the error for the entire hierarchy.

We introduce a solution based on the observation that, for many data sets, the range size of scalar data sets
is often many orders smaller that the domain size (physical extension) � and that, instead of evaluating an error
function for each original voxel, it su�ces to count the frequencies of unique pairs of error terms. In the case of
8-bit (byte) integer data, there are only 2562 combinations (each term is a single byte, or 256 possible values). To
compute the error, instead of adding individual error terms, we add the products of the error (for a unique pair
of error terms) and the frequency of that unique pair.

For example, a typical 5123 voxel data set, with one byte per voxel, contains 227 bytes. To compute the error,
a naive method would evaluate an error function for each of the original 227 voxels. However, there are only 2562

unique pairs of error terms. Thus, to compute the error, we evaluate the error function for each unique pair of
error terms, or 216 times � which is 211 times faster than the naive method. This algorithm requires us to examine
the entire data set for unique pairs of error terms - this is a preprocessing cost that can be performed o�-line.
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This work is a direct extension of earlier work reported in [LJH99], [LHJ00], and [LDHJ00]. We �rst review
the generation and rendering of a volume hierarchy in Section 2, discuss the error criterion we use in Section 3,
cover some basic optimizations of the general approach in Section 4, provide performance statistics in Section 5,
and discuss directions for future work in Section 6.

2 Multiresolution Volume Visualization

Our multiresolution volume visualization system uses hardware-accelerated 3D texturing for rendering a volume;
it represents a volume with index textures. A transfer function is applied by �rst building a look-up table,
transferring it into the graphics system, and then transferring the texture tile. The translation of index values to
display values (luminance or color) is performed in hardware. In the following discussion, we use the term tile to
refer to the data and node to refer to the element of a binary tree or octree. In some passages, we will use tile to
refer to both. Voxels are attributes of tiles and spatial location and extent are attributes of nodes.

2.1 Generating the Hierarchy

First, we review certain aspects of our multiresolution data representation and how it in�uences the decisions on
how to evaluate and store error. The underlying assumption is that data sets are too large to �t into texture
memory. Data sets are often too large even to �t into main memory. Given a volumetric data set, we produce
a hierarchy of approximations. Each level in the approximation hierarchy is half the size of the next level. Each
level is broken into constant-sized tiles � tiles that are small enough to �t in their entirety in texture memory, see
[LJH99]. This is also called �bricking� in [GHY98]. Figure 1 shows the decomposition of a block consisting of 29

Figure1. Line (A) shows a block of pixels, is broken into four tiles of eight pixels on line (B). Line (C) is our shorthand
notation for line (B).

pixels (line A) into four tiles of eight pixels (line B), with one shared pixel in the regions where the tiles overlap.
The shared pixel is necessary because we linearly interpolate pixel centers. The alternating thicker borders in line
(C) show the position of the individual tiles of a block - this is our �shorthand notation� for line (B).

Figure 2 shows a one-dimensional texture hierarchy of four levels. The top level, level 0, is the original texture
(of 57 pixels), broken into eight tiles (of eight pixels). Level 1 contains four tiles at half of the original resolution
(29 pixels), and so on. The dashed vertical lines on either side show the domain of the texture function over the
hierarchy. Arrows indicate the parent-child relationship of the hierarchy, de�ning a binary tree, rooted at the
coarsest tile, level 3. The bold vertical line denotes a point of interest, p, and tiles are selected when the distance
from p to the center of the tile is greater than the width of the tile. One starts with the root tile and performs
selection until all tiles meet this distance-to-width criterion, or no smaller tiles exist 1. The double-headed vertical
arrows show selected tiles and their correspondence in the �nal image.

Figure 3 shows a two-dimensional quadtree example. The original texture, level 0, has 256 tiles. The shaded
regions in each level show the portion of that level used to approximate the �nal image. The selection method in
the two-dimensional case is similar to the one for the one-dimensional case: A node is selected when the distance
from the center of the node to the point p is greater than the length of the diagonal of the node. The original
1 This is the case on the left side of Figure 2.
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Figure2. Selecting from a texture hierarchy of four levels. Level 0 is the original texture, broken into eight tiles. The
dashed lines show the domain of the texture function over the hierarchy. The bold vertical line represents a point p of
interest. Tile selection depends on the width of the tile and the distance from the point. The red, green, and blue shaded
regions in levels 0, 1, and 2, respectively, and then in the Final Image, show from which levels of detail the data is used to
create the �nal image.

Figure3. Selecting tiles in two dimensions from a texture hierarchy of �ve levels (Level 4 not shown). Given the point p,
tiles are selected when the distance from the center of the tile to p is greater than the length of the diagonal of the tile.
Tiles selected from each level are shaded.
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texture is divided into 256 tiles. The adaptive rendering scheme uses 49 tiles or, roughly, one-�fth of the data.
This scheme can easily be used for three-dimensional textures using an octree.

2.2 Node Selection and Rendering

The �rst rendering step determines which nodes will be rendered. This means �nding a set of non-overlaying
nodes that meet some error criterion. The general logic is to subdivide nodes, starting at the root node, until the
error criterion is met, always subdividing the node with the greatest error.

We use a priority queue of nodes that is sorted by descending error, i.e., the �rst node in the queue is the one
with the highest error. We �rst push the root node onto the queue. We then iterate the following: we examine to
top node (the node with the highest error). If the error criterion is not met (which we de�ne below), that node
is subdivided, or removed from the queue and all of its children are added to the queue. This continues until the
error criterion is met. This is guaranteed to terminate as all leaf nodes have zero error. All nodes still in the queue
meet the error criterion and are rendered.

Our primary selection �lter is based on one of these two error criterion:

� L-in�nity (l∞): Subdivide the node if the node's associated l∞ error is greater than some maximum value,
i.e., all rendered nodes must have an error less than this maximum value.

� Root-mean-square (RMS) : Subdivide the node if the root-mean-square error over all selected nodes is greater
than some maximum value, i.e., the root of the sum of the squared di�erences considering all rendered nodes
must be less than this maximum value. Rather than re-calculate the error each time a node is subdivided, we
keep a running error total, subtracting a node's error when it is removed from the queue and adding a node's
error when it is added to the queue.

We note that many other error criterion can be used and that our algorithm is not limited to the two selected
here. Nodes are sorted and composited in back-to-front order. We order nodes with respect to the view direction
such that, when drawn in this order, no node is drawn behind a rendered node. The order is �xed for the entire
tree for orthogonal projections and has to be computed just once for each new rendering [GHY98]. For perspective
projections, the order must be computed at each node.

3 Error Calculation

We calculate error on a per-node basis: When a node meets the error criterion, it is rendered; otherwise, its
child (higher-resolution) nodes are considered for rendering. We currently assume a piece-wise constant function
implied by the set of given voxels, but use trilinear interpolation for the texture. This approach simpli�es the
error calculation.

We use two error norms: the L-in�nity and root-mean-square (RMS) norms. Again, we note that other error
norms may be better, but these are su�ciently simple as to not complicate the following discussion. Given two
sets of function values, {fi} and {gi}, i = 0, . . . , n − 1, the L-in�nity error norm is de�ned as l∞ = maxi {|xi|},
and the RMS is de�ned as Erms =

√
1
n

∑
i (x2

i ), where xi = T [fi] − T [gi] and T [x] is a transfer function. For

the purposes of this discussion, we assume that T [x] is a simple scalar function, mapping density to gray-scale
luminance; the issue of error in color space is beyond the scope of this discussion. We evaluate the error function
once for each Level-0 voxel.

A data set of size 5123 contains 227 voxels, with the same number of pairs of error terms for each level of the
hierarchy. However, when using byte data, we observe that, though there are 227 pairs of values, there are only
216 (2562) unique pairs of error values. This means, on average, that each unique pair is evaluated 211 times.

Our solution is to add a two-dimensional table Q to each internal (e.g., approximating) node of the octree, see
Figure 5. The elements Qa,b store the numbers of occurrences for each (fi, gi) pair, where a and b are the table
indices corresponding to fi and gi, respectively. Thus

Qa,b =
∑
i

(
1 if fi = a and gi = b
0 otherwise

)
.

The tables are created only once, when the data is loaded, and count the number of occurrences of unique error
terms that the node �covers� of the original data.
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To calculate the L-in�nity error for a node, we search for the largest value, with the requirement that this
value corresponds to a real pair of values:

l∞ = maxa,b|Qa,b 6=0 {|T [a]− T [b]|} .

We compute the RMS error for a node as

Erms =
√

1
n

∑
a,b

(T [a]− T [b])2 ×Qa,b,

where n =
∑
a,b (Qa,b). For a set of t nodes, we compute the RMS value

Erms =

√√√√√ 1
N

∑
t

∑
a,b

(T [a]− T [b])2 ×Qa,b

,

where N =
∑
t

(∑
a,bQa,b

)
.

Figure4. The Visible Female CT data set. Image (B) in the upper-right corner shows the frequency relationship of
the original and �rst approximation of the Visible Female CT data set. The image consists of 256 × 256 pixels, with
a on the horizontal axis and b on the vertical axis; each pixel corresponds to a Qa,b element. This particular table,
covering all of the original domain, would not be produced in practice; normally, Q tables associated with the �rst-level
approximation cover fairly small regions of the original domain. Image (B) is shown here to provide the reader with
insight into the nature of a typical Q table. The colors are assigned by normalizing the logarithm of the number of
occurrences of a Qa,b element, linearly mapped to a rainbow color sequence, where zero maps to red and one maps to
violet: pixela,b = RainbowColorMap [ln (Qa,b) /ln (Maxa,b {Qa,b})]. Graph (A), on the left, shows the histogram of the
original data (Level 0), with positive frequency pointing left. Graph (C), on the bottom, shows the histogram of the �rst
approximation (Level 1), with positive frequency pointing down.

Image 4(B), shown in the upper right-hand corner of Figure 4, shows a graphical representation of the frequency
relationship of the original and �rst approximation of the Visible Female CT dataset. Figure 4 indicates that the
approximation is generally good: Most of the error terms are along the diagonal. The �lines� in the upper-left
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corner of image 4(B) may correspond to high gradients present in the data set. (The Visible Female CT data set
was produced such that sections of the body �ll a 5122 image: these di�erent sections are scanned with di�erent
spatial scales. We have not accounted for these di�erent spatial scales in our version of the data set, thus there
exist several signi�cant discontinuities in data values in the data set.)

4 Optimizations

Evaluating a table is still fairly expensive when interactive performance is required. We currently use three
methods to reduce the time needed to evaluate the error.

First, one observes that the order of the error terms for calculating L-in�nity and root-mean-square errors
does not matter: xi = |fi − gi| = |gi − fi| and xi = (fi − gi)2 = (gi − fi)2. If we order the indices in Qa,b such
that a ≤ b, or a = min(fi, gi) and b = max(fi, gi), we obtain a triangular matrix that has slightly more than half
the terms of a full matrix (32896 vs. 65536 entries). This consideration allows us to roughly halve the evaluation
time and storage requirements.

Second, one observes that, typically, there is a strong degree of correlation between approximation and original
data. This means that the values of Qa,b are large when a is close to b (i.e., near the diagonal); and small, often
zero, when a � b, (i.e., far away from the diagonal). We have observed that the number of non-zero entries in
a Q table decreases (i.e., the table is becoming more sparse) for nodes closer to the leaves of the octree. This
happens since the nodes closer to the leaf nodes correspond to high-resolution approximations and thus a better
approximation - the correlation is strong, and the non-zero values in the Q table cluster close to the diagonal.
Also, the nodes closer to the leaves cover a progressively smaller section of the domain. We perform a column-
major scan, i.e., traverse the table �rst by column, then by row. Thus, the Q tables become sparse, and we
can terminate the checking of elements if we remember the last non-zero entry for a row. We maintain a table,
Lrow, that contains the index of the last non-zero value for a row. It may even be possible to perform run-length
encoding for a row to skip over regions of zero entries. Figure 4 shows that there are large, interior regions with
zero entries.

Figure5. Selecting from a texture hierarchy consisting of four levels with lazy evaluation of error. The error selection cri-
terion selects high-resolution nodes in the high-error regions (left) and low resolution nodes in the low-error regions (right).
The letter Q indicates nodes with a Q table, i.e., nodes that are all internal (approximating) nodes. Three classi�cations
of tiles are shown. Blue-diamond tiles are never visited. Error is evaluated in red-round and green-square tiles; red-round
tiles exceed the error requirement and are subdivided; green-square tiles meet the error requirement and are used.

Third, one can use �lazy evaluation� of the error. When we re-calculate the error for all nodes in a hierarchy,
and few of the nodes are rendered, much of the error evaluation is done but not used. Thus, for each new transfer
function, we only re-calculate the error value of those nodes that are being considered for rendering, see [LHJ00].
In Figure 5, nodes with a red circle around the Q do not satisfy the error criterion, nodes with green squares
around the Q meet the error criterion, and nodes with blue diamonds around the Q are never visited, and thus
no error calculation is performed.
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5 Results

Performance results hierarchy generation, error table generation, and error computation time were obtained on an
SGI Origin2000 with 10GB of memory, using one (of 16) 195MHz R10K processors. However, images were produced
on an SGI Onyx2 In�nite Reality with 512MB of memory, using one (of four) 195MHz R10K processors. This was
done for the following reasons: We are interested in the time required to process the hierarchy, free of memory
limitations. The logical memory used during a visualization was 2.4GB, and thrashing completely dominated
(by a factor of 10 or more) hierarchy/error-table generation and error calculation times when performed on the
Onyx2. The SGI Origin2000 does not have a graphics subsystem, while the SGI Onyx2 does.

(a) 5122 × 1734 voxels, 454MB (b) 2572 × 868 voxels, 57MB

(c) 1292 × 435 voxels, 7.2MB (d) 652 × 218 voxels, 921K

Figure6. Visible Female CT data set rendered at four resolutions (see Table 1). The transfer function shows bones in
white, fat in yellow, muscle in red, and internal organs in green. Di�erent spatial scales were used for di�erent sections of
the body during data acquisition.
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Image Level Voxels Nodes Nodes Mem. Time Error
in Level Rendered (MB) (sec.) l∞ Erms

6a 0 5122 × 1734 2268 1560 390 83.4 0.000 0.00000
6b 1 2572 × 868 350 263 65 8.73 0.305 0.00678
6c 2 1292 × 435 63 49 13 2.38 0.305 0.00917
6d 3 652 × 218 16 16 4 0.563 0.305 0.01059

Table1. Visible Female CT data set statistics.

We have used the Visible Female CT data set, consisting of 5122 × 1734 voxels in our experiments. Figure 6
shows di�erent-resolution images of this data set: Image 6(a) shows the original data, and images 6(b) to 6(d) are
progressively 1/2 linear (1/8 total) size. Table 1 summarizes performance statistics for four (of six) levels of the
hierarchy. The �Voxels� column shows the total size of the approximation in voxels, and the next column shows
the total number of nodes associated with that level. The �Nodes Rendered� column shows how many nodes where
used to render that level. The number of nodes rendered is actually less than one would expect: Many regions
of the data set are constant, so there is no error when approximating these regions. Each tile contains 643 bytes
= 256K. When transferring n tiles, the total memory transferred to the graphics subsystem for n tiles is 256K×n,
shown in the �Memory� column. The �Time� column lists the times, in seconds, required to produce the rendering
for the various levels. The l∞ and Erms columns show the error values associated with those renderings.

Step Index Texture
Compute Texture Hierarchy 1 min 46 sec

Compute Error Table 5 min 35 sec
Calculate Error 1.23 sec

Table2. Performance statistics for Visible Female CT data set.

Table 2 summarizes the times for various stages of our system. We note that the �Compute-Texture-Hierarchy�
and �Compute-Error-Tables� stages are only performed once for a data set, and only the �Calculate-Error� step is
performed for each new transfer function. The time for �Calculate-Error� is the times needed to re-compute the
error for all 432 internal (i.e., approximating) nodes. The time per node is approximately 0.0028 seconds � and
when coupled with a lazy evaluation scheme, �Calculate-Error� time is very small relative to the other parts of
the rendering pipeline (see �Time� column in Table 1).

6 Conclusions and Future Work

We believe that there are several directions to continue this work. The �rst directions is to extend this technique
to color images or more general vector-valued data hierarchies. The second direction is to consider data other than
byte data: data sets with 12 and 16 bits per voxel are also common. However, a table would contain 40962 (224)
or 655362 (232) entries. These tables would be larger than the actual volume data per node, and possibly require
more time for evaluation. Could some quantizing approach work? Since these nodes should have a high degree
of correlation, will these tables be su�ciently sparse to compress? A third direction is to apply our technique to
time-varying data. The error between nodes in di�erent time steps would be expressed in the same manner and
could be encoded in a table.
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